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Abstract

With the increasing market of cheap cameras, natural
scene text has to be handled in an efficient way. Some works
deal with text detection in the image while more recent ones
point out the challenge of text extraction and recognition.
We propose here an OCR correction system to handle tra-
ditional issues of recognizer errors but also the ones due to
natural scene images, i.e. cut characters, artistic display,
uncomplete sentences (present in advertisements) and out-
of-vocabulary (OOV) words such as acronyms and so on.
The main algorithm bases on Finite-State Machines (FSMs)
to deal with learned OCR confusions, capital/accented let-
ters and lexicon look-up. Moreover, as OCR is not consid-
ered as a black box, several outputs are taken into account
to intermingle recognition and correction steps. Based on a
public database of natural scene words, detailed results are
also presented along with future works.

1. Introduction

With the emerging explosion of cameras’ sales, from
low-priced to high professional quality, taking a picture is
easy and common. It opens a wide range of applications,
especially for automatic processing in order to bring writ-
ten information to visually impaired people, for example.
Camera-based images lead to several degradations, with un-
even lighting, sensor noise, various blurs, varying colors
and contain a large diversity of text fonts and sizes, with
sometimes very artistic display. Character recognition of
these natural scenes is much more difficult than scanner-
based one and moreover follows the arduous steps of text
detection and text extraction. Hence, several additional
degradations may be listed such as cut or touching charac-
ters due to low-resolution or out-of-field images, inaccurate
word segmentation or absence of punctuation due to the low
quality of images or by the text itself (for instance, the one

printed for advertisements). These errors may be present in
traditional OCR but in a more rare way and dealing with all
these degradations is a new challenge of natural scene un-
derstanding. Correction of character recognition is hence an
obvious and mandatory step to substantially increase recog-
nition rates and make applications possible.

To reach this satisfactory goal, correction using FSMs is
presented in the following sections. FSMs are widely used
to model systems in diverse areas, such as natural language
processing or data compression (for instance, a lexicon of
several thousands of forms, compiled as an FSM, allows in-
stantaneous accesses while it takes less than 1 MB of mem-
ory (RAM)). As they accept the class of regular languages
and can be expressed using regular expressions, FSMs have
been shown to be a very versatile, descriptive framework:
they lead to a compact representation of rewrite rules, used
among others for describing linguistic phenomena. FSMs
are one of the most widely used models in computer pro-
gramming in general; they have even been adopted as a part
of the well-known Unified Modeling Language (UML).

In order to highlight and compare results presented in
this paper, we will present recent works in terms of OCR
correction in Section 2 and will give an overview of FSMs
in Section 3. We then describe in Section 4 our FSM-based
method for correcting non-word errors in natural scene
OCR, and present in Section 5 the performance of our al-
gorithm tested on the public database of ICDAR 2003 [1].
Finally in Section 6, we will conclude this paper and browse
future works in the field of real-word error correction or
OOV words by using additional FSMs representing, among
others, syntactic rules.

2. State-of-the-Art of Natural Scene OCR Cor-
rection

A natural scene OCR is error-prone in a larger percent-
age than conventional OCR and a post-processing correc-
tion solution is necessary. Main ways of correcting pattern



recognition errors are either multiplication of classifiers to
statistically decrease errors by adding information from dif-
ferent computations, such as Lopresti and Zhou proposed
for WWW images [9], or by exploiting linguistic infor-
mation. Commercial OCRs use mainly a lexicon to vali-
date in-dictionary words, and ask the user for feedback on
more erroneous words. For embedded natural scene Chi-
nese sign recognition [17], user feedback is also required
through dedicated interfaces for OOV words, meaning that
no correction is performed. User intervention may be awk-
ward for industrial purposes or meaningless for applications
dedicated to blind people.

There are essentially two types of word errors: non-word
ones leading to invalid words and real-word errors which
are different interpretations from the printed word. Most
works deal with non-word errors, handled in this paper.
More details for real-word errors will be discussed in Sec-
tion 6 and may be found in the survey of Kukich [7].

For isolated word correction, lexicons are often used
for their error rates decrease. On the contrary, for
lightweight methods, systems use probabilistic techniques
and n-gram analysis, classically solved through Hidden
Markov Models (HMM) or dynamic programming, first
used by Neuhoff [14] in text correction. Borovikov et al. [3]
have built a HMM-based correction using several post-OCR
filters. OCR errors were modeled in terms of a two-layer
stochastic process to deal with known and observed char-
acters. Mancas-Thillou et al. [16] have exploited the 3 best
OCR outputs to feed a trigram of letters solved using dy-
namic programming. Due to the absence of a lexicon, real
words may be corrected into OOV words and it is very dif-
ficult to correct words with a large number of errors.

In contrast, some methods use lexicon look-up.
Bunke [4] built an FSM to find out the most similar strings
from a vocabulary using minimum edit distance techniques.
Nevertheless, a high spatial cost was mentioned as the cor-
rection was not driven by errors but by similarity only.
Jones et al. [5] described an OCR post-processing system
which uses individual steps for correction: rewrite rules,
correction of word split errors and use of word bigram prob-
abilities. The three phases interact with others to guide
the search but decision has to be taken at each step. Ko-
lak et al. [6] use at run-time a single transducer that takes
a sequence of OCR characters as input, and returns a lat-
tice of all possible sequences of real words as output, along
with their weights. This transducer is the result of the off-
line composition of several transducers trained separately
on the same corpus. The main idea of this system is to split
each in-dictionary word into its two most probable subse-
quences of characters (e.g., “example”⇒ “ex | ample” and
“exam | ple”), and to propose, from the training corpus, a
list of observed corrupted sequences (e.g., “exam” ⇒ “ex-
ain”, “cxam”, etc.). A first drawback of this system is this

OCR confusion model, which is context-dependent. The
second drawback is surely the off-line composition of a sin-
gle transducer, as no simplification between the different
steps is still possible at run-time.

All aforementioned methods consider OCR as a “black
box” and start correction independently of OCR results. In
contrast, we shall propose an efficient non-word error cor-
rection which bases on a finite-state framework for com-
bining the 3 best OCR outputs with trained confusions
and linguistic information, among which fast lexicon look-
up. This system, designed for use on handheld devices,
is lightweight at run-time thanks to simplifications that are
performed, without loss of information, after each compo-
sition with one of our models.

3. Overview of Finite State Machines

Due to the brevity of this overview, we urge the reader
who is not familiar with FSMs to consult the state-of-the-art
literature [11, 12, 13, 15]. FSMs, which include finite-state
automata (FSAs), finite-state transducers (FSTs) and their
weighted counterparts (WFSAs and WFSTs), can be seen
as defining both a class of graphs and a class of languages.

On the first interpretation, an FSM is simply an ori-
ented graph with labels on each arc. Transitions of FSAs
are labeled with symbols from a single alphabet Σ, while
transitions of FSTs are labeled with both input and output
symbols belonging to two different alphabets Σ1 and Σ2.
Weighted machines put weights on transitions in addition
to the symbols.

On the second interpretation, FSMs define the class of
regular languages. In this definition, an FSA is an acceptor:
it represents the set of strings over Σ for which there is a
path from the initial state to a final state of the graph. In
contrast, an FST translates strings of a first language over
Σ1 into strings of a second language over Σ2; hence, it de-
fines relations between languages. In weighted machines,
weights, which encode probabilities or distances, are accu-
mulated along paths to compute either the overall weight of
a string (in WFSAs), or the overall weight of mapping an
input string to an output string (in WFSTs). WFSMs are
thus a natural choice for solving the n-best-strings problem.

A few fundamental theoretical properties make FSMs
very flexible, powerful and efficient. Among them, the
composition (◦), a generalization of automaton intersection:
from an FST T1 working on Σ1 and Σ2, and an FST T2

working on Σ2 and Σ3, the composition computes their in-
tersection on Σ2 and builds the FST T3 working on Σ1 and
Σ3. Hence, this operation makes it possible to combine
different levels of representation for building complex re-
lations from simpler ones. Note that composition can apply
to an automaton, in so far as it is considered as the identity
transducer, i.e a transducer in which each symbol is mapped



Figure 1. From M , the OCR matrix, to W , the
vector of WFSA pointers.

onto itself. Our algorithm directly relies on this operation.

4. FSM-based OCR Correction

Overview. The pseudo-code is shown in Algorithm 1.
Our algorithm works on a matrix M containing the 3 best
OCR outputs for each letter of the sentence to be recog-
nized. Given a vector S of n space locations, the algorithm
starts splitting M into n + 1 words. As shown in Figure 1,
for each word, a dynamic WFSA w is built and stored in the
vector W , a vector of WFSA pointers (line 1).

By integrating the 3 best outputs for each letter, w pro-
poses in a simple way all possible successions of letters.
In w, each OCR output receives a weight. Our hypothesis
is that the best output, which gets often more than 90% of
the OCR confidence, has to be privileged, while second and
third outputs, that the OCR does not sometimes distinguish
enough, should receive the same weight. Hence, we exper-
imentally award a weight 3 times larger for the first output
(− log2(1)) than the weight for both others (− log2(0.33)).
Note that weights are expressed with logarithms in order to
add weights instead of multiply them to compute probabili-
ties with several transitions.

The algorithm then iterates on the machines stored in W
(lines 3–15). A given WFSA W [i] is combined, by compo-
sition, with m (W)FSTs, which represent the different mod-
els (M) we take into account (lines 6–8). If the result ρ of
these compositions is not empty, the WFSA B[i] is created
(line 10): it contains the best path of ρ, i.e the closest form
of word i that belongs to our lexicon, given the modifica-
tions our intermediate models authorize.

However, if either B[i] does not exist or its weight is up-

Algorithm 1 FSM correction
1: W ← FSMVecCreate(M,S, n)
2: B← new FSM[n + 1] /* Initialization */
3: for i = 0 to n do
4: B[i]← ∅
5: ρ←W [i]
6: for j = 0 to m and ρ 6= ∅ do
7: ρ← ρ ◦M[j]
8: end for
9: if ρ 6= ∅ then

10: B[i]← FSMGetBestPath(ρ)
11: end if
12: if B[i] = ∅ or Weight(B[i]) > Threshold(W [i])

then
13: B[i]← FSMGetBestPath(W [i])
14: end if
15: end for
16: return StringCreate(B)

per than a given threshold, B[i] is replaced by the best path
directly taken from W [i] (line 13). It enables to handle very
efficiently OOV words. Experimentally, the threshold is de-
fined as:

Threshold(W [i]) = L(wi) · − log2(0.25) (1)

where L(wi) is the length of word i.
The algorithm ends building, from B, the string corre-

sponding to the complete sentence (line 16).

About the modelsM. Three models are currently used,
ranked as follows: a confusion list, an alphabetic mapping
and finally the lexicon itself.

• The confusion list contains weighted confusions like
‘i’ for ‘l’ or ‘rn’ for ‘m’. The list itself and the weight
associated to each confusion have been learned from
the errors of our home-made OCR, launched on the
ICDAR 2003 [1] corpus. From this training, the prob-
ability of ‘i’ for ‘l’ is computed as P(l|i):

P(l|i) =
#(i 7−→ l)

#(i)
(2)

where (i 7−→ l) means “i for l”. The list, from which
errors that occurred only once have been removed,
contains 231 confusions and has been compiled as a
WFST that allows only 1 confusion every 3 letters.
This restriction is added to reduce the number of pos-
sible answers but it is not strict as recognition rate is
larger than 80%. This machine takes 2.2MB1.

1A compiled FSM is a binary dump of the memory. Hence, the size of
the result is the same on the HDD and in the RAM.



• An alphabetic mapping is needed because the OCR
works on alphanumeric symbols2, while the lexicon
works on the extended ASCII set. The alphabetic map-
ping allows 2 kinds of conversions: from lower to
upper case, and from non-accentuated to accentuated
characters (a→ [Aäâáàã], n→ [Nñ]). Compiled as an
FST, the mapping takes 1.5KB.

• The last of these models is and must be the lexicon it-
self, since it directly depends on the targeted language.
For French, the lexicon contains 330,000 flexed forms
and takes 1.3 MB once compiled. For English, less in-
flective than French, the lexicon only contains 75,000
forms, but takes 2.4 MB once compiled. Up to now,
our lexicons are simple FSAs, but could be WFSAs
by allowing for word frequencies, not yet estimated on
wide enough corpora.

Why using FSMs? FSMs present great advantages.
Among them, flexibility, modularity, and time and space ef-
ficiency.

• Flexibility. FSMs allow one to represent any kind of
knowledge, from the most linguistic to the most math-
ematical, as far as this knowledge can be expressed as
a regular language [15]. It is the case of the models we
designed. Flexibility enables also to circumvent fre-
quent errors in natural scene recognition such as the
non-detection or recognition of accents.

• Modularity. By using composition at run-time instead
of compiling a monolithic model once and for all (al-
gorithm 1, lines 6-8), we can easily remove or add a
model wherever in the composition process, and di-
rectly observe the impact of this modification on the
results. For instance, we could add a machine model-
ing the insertion of spaces in a word just before com-
posing ρ with the lexicon. Modularity is also true for
the global process: instead of building a string of let-
ter at the end (line 16), we could concatenate all WF-
SAs of W , and compose this machine with a language
model (either lexical or syntactic), also represented as
a WFSA.

• Time and space efficiency. Finite-state machines can
be turned into canonical forms that allow for optimal
time and space efficiency, and entail the decidability
of a wide range of questions. At run-time, this is pos-
sible by simplifying intermediate results using opera-
tions like projection [11], epsilon-free [12] and deter-
minization [13].

As our algorithm aims at computing a measure of sim-
ilarity between strings (the OCR output against words of

236 symbols: [a-z] and [0-9].

the lexicon), the most important feature of this finite-state
framework is its ability of easily modeling complex Leven-
shtein distances. As well known, Levenshtein distance is a
measure of the similarity between two strings: the distance
is the number of deletions, insertions, or substitutions re-
quired to transform a source string into a target string [8].
However, the standard algorithm only allows for one-to-one
substitutions, like ‘i’ for ‘l’, while n-to-m substitutions, like
‘rn’ for ‘m’ or ‘h’ for ‘li’, are simply handled as sequences
of one-to-one substitution surrounded by one or more inser-
tions/deletions.

Our intermediate models, the substitution list and the al-
phanumeric mapping, have been compiled using a home-
made compiler able to convert weighted rewrite rules into
FSMs [2]. This compiler allows in a simple way the descrip-
tion of weighted n-to-m substitutions. Hence, our complete
algorithm may be seen as a complex Levenshtein distance
which easily allows for n-to-m substitutions, and takes their
learned weights into account.

5. Tests and efficiency

First, we used the English ICDAR 2003 corpus [1] in or-
der to train a static confusion list, by comparing the corpus
labeling to the decisions of our OCR.

We then made two tests. The first one was on a home-
made French corpus of more than 400 natural scene words.
With a simple trigram-based correction, the recognition rate
was 86.5%. With our FSM-based correction, the recogni-
tion rate increased to 94.7% [10]. This good result on a
French corpus shows that the confusion list is not specific
to the corpus it has been trained on, but is rather a correct
estimation of the confusions of the OCR.

The second test was on the ICDAR 2003 database itself,
which includes 2268 natural scene words. It compares our
system to a commercial OCR3. After a convenient segmen-
tation for natural scenes [10], images were processed by the
commercial OCR, with an error rate of 29.1%. The test is
focused on these errors only. Table 2 compares the 3 first
suggestions made by the commercial OCR with the auto-
matic corrections performed by our FSM-based model, pro-
vided with either the best or the 3 best OCR outputs. Our
model clearly outperforms the commercial system and the
use of the 3 best OCR outputs highly improves our own re-
sults. The only drawback in using the 3 best outputs is the
growing amount of wrong corrections on OOV: it increases
from 0.6% to 8.6%. This means that adding more informa-
tion with the 3 best outputs leads to better correction and
global recognition, but also adds confusion in a minor way.

Our corrector efficiently deals with n-to-m substitutions.
The word ‘Office’ (Figure 3, left) was recognized as ‘Ohice’

3ABBYY FineReader 8.0 Professional Edition Try&Buy.



Figure 2. Tests on the ICDAR 2003 database

and the commercial OCR could not propose the proper
word. Suggestions it does are based on the Levenshtein
distance between the recognized word and in-dictionary
words. On the contrary, our corrector finds the proper word.
The word ‘form’ (Figure 3, right) is a typical case of cut
characters in natural scenes. Our OCR recognized it as
‘fnrm’ but proposed an ‘o’ as second best output for the
second letter which enables our corrector to find the word
properly and to rank ‘form’ before ‘farm’.

The efficiency of our FSM-based model has been tested
on a classical PDA (PocketPC 2003, 520 MHz): it corrects
a word of 13-character length or less in 0.2s.

6. Conclusion and Future Works

An end-to-end FSM-based correction with no interme-
diate decision between each step has been proposed to cor-
rect natural scene text. Based on finite state machines to
highlight flexibility, modularity in a lightweight way, lin-
guistic information was intermingled with several best out-
puts of a recognizer. This has proven efficiency in a pub-
lic database to handle usual cases of correction, i.e inser-
tion, deletion and substitution. Moreover, the presence of
OOV words in natural scenes is quite usual and our correc-
tor deals quite well with this difficulty. Nevertheless, results
may be still improved by using an additional machine based
on morphemes instead of words to permit the correction of
OOV words. For example ‘Constantine’ is an OOV word
present in this database and was recognized as ‘Comstan-
tine’. With a morpheme-based machine, ‘Coms’ would be
easily turned into ‘Cons’, even if it leads to an OOV word.
In addition, a syntactic machine may follow our main chain
to correct real words with other in-dictionary words but also
to discriminate good answers after correction. The example
could be for the word ‘form’ expressed in Section 5 where
the correction was good in this case but could be ‘farm’ in
another context. Hence using syntax may improve results in
a higher level of linguistic information. Actually, these two

Figure 3. Two interesting images that our cor-
rector handles properly.

latest machines are part of our future works.
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